<u>American University of Beirut</u> <u>Mathematics Department</u> <u>Math 204 Spring 2013-2014</u> <u>Ouiz I</u>

<u>Time:</u> 70 min.

<u>Name</u> :		ID#:	
Circle your problen	ı solving section numl	ber below:	
• Instructor : <u>Ms. Mic</u>	hella Bou Eid		
Sec 1 : Th @ 3 :30	Sec 2 : Th	n @ 2 :00	
• Instructor : <u>Ms. Jour</u>	<u>mana Tannous</u>		
Sec 4 : F @ 9 :00	Sec 5 : F @ 10 :00	Sec 6 : F @ 11 :00	Sec 7: F @ 1 :00
• Instructor : <u>Mrs Ma</u>	<u>ha Itani-Hatab</u>		
Sec 8: M @ 1 :00	Sec 9 : M @ 8 :00	Sec 10: M @ 10 :00	Sec 11: M @ 12 :00
• Instructor : <u>Ms.Ran</u>	<u>a Nassif</u>		
Sec 12: W @ 1 :00	Sec 13 : W @ 12	:00	
• Instructor : <u>Ms. Naj</u>	wa Fuleihan		

Sec 14 : T @ 8 :00 Sec 15 : T @ 11 :00 Sec 16 : T @ 9 :30

						Grade of Part I	
# of correct answers :						42 %o	
# of wrong answers :							
1.	2.	3.	4.	5.	6.	Grade of Part II	Final Grade
						58 %	

<u>Answer table for Part I</u>

1	2	3	4	5	6	7	8	9	10	11	12

(42 %) <u>Part One</u>: 12 multiple choice questions, with 3.5% for each correct answer and - 0.5 % penalty for each wrong.

Circle the correct answer then, copy your answers as a, b, c or d on the table provided on page 1:

1.
$$\begin{pmatrix} a^{3} - 1 & 0 \\ 5 & -2 \\ -3 & 3 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 0 & 2 \\ 4 & 8 \\ 6 & 10 \end{pmatrix} = \begin{pmatrix} 8 & d^{2} - 11 \\ -5a & 2b \\ 6c & -7d \end{pmatrix}$$
, then $d =$
a) 3 b) -3 c) 4 d) -4
If $A = \begin{pmatrix} \frac{1}{2} & \frac{-1}{4} \\ 5 & \frac{3}{2} \end{pmatrix}$ then (Answer the following two questions)
2. $A^{-1} =$
a) $\begin{pmatrix} \frac{3}{4} & \frac{1}{8} \\ -5 & \frac{1}{4} \end{pmatrix}$ b) $\begin{pmatrix} \frac{3}{2} & \frac{1}{4} \\ -5 & \frac{1}{2} \end{pmatrix}$ c) $\begin{pmatrix} 5 & -\frac{1}{2} \\ -\frac{3}{2} & -\frac{1}{4} \end{pmatrix}$ d) $\begin{pmatrix} -\frac{5}{2} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{8} \end{pmatrix}$
3. If $A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ 5 & \frac{3}{2} \end{pmatrix}$ and $B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ then the solution X of the system of equations AX=B is
a) $\begin{pmatrix} 3 \\ -\frac{1}{2} \end{pmatrix}$ b) $\begin{pmatrix} -\frac{1}{2} \\ 3 \end{pmatrix}$ c) $\begin{pmatrix} 10 \\ 7 \end{pmatrix}$ d) $\begin{pmatrix} -17 \\ 8 \end{pmatrix}$
4. The determinant of the matrix $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -8 & -1 & 7 & 0 \\ 5 & 1 & -8 & -1 \end{pmatrix}$ is equal to:
a) -21 b) 0 c) 21 d) 1

_

5. If the matrix	$A = (a_{ij})_{5\times 4}$ is defined	as $a_{ij} = \begin{cases} j-1 & \text{if } i=j \\ j^2+2i & \text{if } i\neq j \end{cases}$	then $7a_{33} - \frac{1}{5}a_{24} =$					
a) 17	b) 14	c) 12	d) 10					
6. If $5_{6}C_{3} - \frac{4P_{3}}{2} = 2 \times {}_{n}C_{2} + n + 7$ then n =								
a) -10	b) 10	c) 9	d) -9					
7. If the determine	nant of a (3×3) mat	rix A is -4 then det $(3A(A))$	$^{T}A^{-1})$) is					
a) -15	b) -45	c) -135	d) -108					
8. A woman has if two of then	8. A woman has 11 close friends, in how many ways can she invite 5 of them to dinner if two of them are not on good terms and will not attend together?							
a) ${}_{9}C_{5}$	b) $_{11}C_5$	c) $_{9}C_{5} + 2 \times _{9}C_{4}$	d) $_{9}C_{5} \times _{9}C_{4}$					
9. A secretary ha	as 12 different folder	rs, 5 black, 3 blue and 4 yel	low.					
In how many	ways can she arrang	e them on a shelf if she war	nts to place the 5 black first?					
a) 12!	b) 5! 3! 4!	c) 3! 9!	d) 5! 7 !					
10. In how many ways can a grocer arrange on a shelf : 3 identical bottles of Cola, 2 identical bottles of Miranda, 2 identical bottles of Seven Up,1 bottle of water and 1 bottle of juice?								
a) 90720	b)10080	c) 15120	d) 50400					
If $A_c = \begin{pmatrix} 3 & x & 3 \\ y & 2 & -5 \\ -2 & 1 & -2 \end{pmatrix}$ is the matrix of cofactors of the matrix $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -1 \\ -1 & 3 & 2 \end{pmatrix}$ 11. then								
a) $x = -1$ and $y =$	=-4	b) $x = -1$ and $y = 4$						
c) $x = 1$ and $y = -$	4	d) $x = 1$ and $y = 4$						
12. det A=								
a) – 1	b) 0	c) -2	d) 1					

<u>Part two</u>: Answer each of the following questions. (Justify your answer and show your work).

(58%)

1. Given the system AX=B,
$$\begin{cases} -2x_1 - 3x_2 - 2x_3 = 2\\ x_1 + x_3 = 0\\ 5x_1 - 2x_2 = 3 \end{cases}$$

- a) Rewrite the first two columns of A to find the determinant of A.(repeated columns method)
- b) Use Cramer's rule to find **only** x_3 .

(6%)

2. If
$$A = \begin{pmatrix} 1 & x \\ 4+x & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ x & 3 \end{pmatrix}$ are two matrices of order 2, find x

so that $2 \det A = 3 + \det B$

(4%)

3. Given the following matrices,

$$A = \begin{pmatrix} 3 & 0 & 4 \\ -2 & -3 & 2 \\ 1 & 2 & 1 \end{pmatrix} , \quad B = \begin{pmatrix} 2 & -5 \\ 1 & -3 \\ 0 & 2 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 0 & 3 \\ -1 & 2 \end{pmatrix}$$

• Find if possible

a) $3BC - I^2$, where I is the identity matrix.

(3%)

b)
$$B^T A^T$$

(3%)

c) $(AB)^T B + CC^{-1}$

(3%)

d)
$$(A^3 IB - C)^0$$

(2%)

• If D and E are two matrices such that dimD = (2×5) and dimE = (3×5) , find dim I and dim O if $(DE^T + C^{-1}O)^T = EID^T$, where I is the identity matrix and O is the zero matrix.

(3%)

4. Given the system of linear equations
$$\begin{cases} 3x_1 + 12x_2 - 3 = x_2 - 4x_3 \\ -2x_1 - 3x_2 - 2x_3 + 3 = 5 \\ 2x_2 + x_3 = -x_1 \end{cases}$$

- a) Write the system in matrix form as AX= B.
 b) Use the Gaussian method to find A⁻¹.
 c) Use A⁻¹ to solve the system (14%)

- 5. Given two families: Mr. X, his wife and his son, Mr.Y his wife and his three daughters.
 - a) In how many ways can they sit on a bench?
 - b) In how many ways can they sit on a bench if the two wives are to sit together?
- (2%)

(2%)

- c) In how many ways can they sit on a bench if the men are to sit together ,the women are to sit together, and the children are to sit together ?
 - d) In how many ways can they sit on a bench if the two fathers are to sit one on each edge?
- (2%)
- e) In how many ways can they sit on a bench if the children are to sit in the middle?
- (2%)
 - 6. A company places a 7-symbol code on each unit product. The code consists of 4 digits followed by 3 letters.
 - (The English alphabet consists of 26 letters: 5 vowels $\{a, e, i, o, u\}$ and 21 consonants)
 - How many different codes are possible?

(2%)

- How many different codes are possible if:
- a) the first digit is odd and the letters are distinct?

(2%)

b) the digits are distinct less than 7, and the first two letters are not vowels ?

(2%)

c) the digits are chosen from the set {2,3,7,9} and the letters alternate between vowels and consonants?

(2%)

(2%) ⁴) any letter can be used and the digits are the arrangements of all the digits of the number 4477 ?