Time: 70 min.

Name : \qquad ID\#: \qquad

Circle your problem solving section number below:

- Instructor : Ms. Michella Bou Eid

Sec 1:Th@3:30 Sec 2:Th@2:00

- Instructor : Ms. Joumana Tannous

Sec 4 : F @ $9: 00 \quad$ Sec $5:$ F @ $10: 00 \quad$ Sec 6:F $@ 11: 00$ Sec 7: F @ $1: 00$

- Instructor : Mrs Maha Itani-Hatab

Sec 8: M@1:00 Sec 9:M@8:00 Sec 10:M@10:00 Sec 11:M@12:00

- Instructor : Ms.Rana Nassif

Sec 12: W@1:00 Sec 13:W@12:00

- Instructor : Ms. Najwa Fuleihan

Sec $14:$ T@ $8: 00 \quad$ Sec $15:$ T@ $11: 00$ Sec 16:T@9:30

\# of correct answers : \qquad \# of wrong answers : \qquad						$\begin{array}{r} \text { Grade of Part I } \\ 42 \% \end{array}$	
1.	2.	3.	4.	5.	6.	Grade of Part II $58 \text { \% }$	Final Grade

- Answer table for Part I

1	2	3	4	5	6	7	8	9	10	11	12

(42%) Part One: 12 multiple choice questions, with 3.5% for each correct answer and - 0.5% penalty for each wrong.

Circle the correct answer then, copy your answers as a, b, c or d on the table provided on page 1:

1. $\left(\begin{array}{cc}a^{2}-1 & 0 \\ 5 & -2 \\ -3 & 3\end{array}\right)+\frac{5}{2}\left(\begin{array}{cc}0 & 2 \\ 4 & 8 \\ 6 & 10\end{array}\right)=\left(\begin{array}{cc}8 & d^{2}-11 \\ -5 a & 2 b \\ 6 c & -7 d\end{array}\right)$, then $\mathrm{d}=$
a) 3
b) -3
c) 4
d) -4

If $\mathrm{A}=\left(\begin{array}{cc}\frac{1}{2} & \frac{-1}{4} \\ 5 & \frac{3}{2}\end{array}\right)$ then (Answer the following two questions)
2. $\mathrm{A}^{-1}=$
a) $\left(\begin{array}{cc}\frac{3}{4} & \frac{1}{8} \\ \frac{-5}{2} & \frac{1}{4}\end{array}\right)$
b) $\left(\begin{array}{cc}\frac{3}{2} & \frac{1}{4} \\ -5 & \frac{1}{2}\end{array}\right)$
c) $\left(\begin{array}{cc}5 & \frac{-1}{2} \\ \frac{-3}{2} & \frac{-1}{4}\end{array}\right)$
d) $\left(\begin{array}{cc}\frac{-5}{2} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{8}\end{array}\right)$
3. If $\mathrm{A}=\left(\begin{array}{cc}\frac{1}{2} & \frac{-1}{4} \\ 5 & \frac{3}{2}\end{array}\right)$ and $\mathrm{B}=\binom{-1}{2}$ then the solution X of the system of equations $\mathrm{AX}=\mathrm{B}$ is
a) $\binom{3}{\frac{-1}{2}}$
b) $\binom{\frac{-1}{2}}{3}$
c) $\binom{10}{7}$
d) $\binom{-17}{8}$
4. The determinant of the matrix $\mathrm{A}=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -8 & -1 & 7 & 0 \\ 5 & 1 & -8 & -1\end{array}\right)$ is equal to:
a) -21
b) 0
c) 21
d) 1
5. If the matrix $\mathrm{A}=\left(a_{i j}\right)_{5 \times 4}$ is defined as $\mathrm{a}_{i j}=\left\{\begin{array}{ll}j-1 & \text { if } i=j \\ j^{2}+2 i & \text { if } i \neq j\end{array}\right.$ then $7 a_{33}-\frac{1}{5} a_{24}=$
a) 17
b) 14
c) 12
d) 10
6. If $5{ }_{6} C_{3}-\frac{{ }_{4} P_{3}}{2}=2 \times{ }_{n} C_{2}+n+7$ then $\mathrm{n}=$
a) -10
b) 10
c) 9
d) -9
7. If the determinant of a (3×3) matrix A is -4 then $\operatorname{det}\left(3 A\left(A^{T} A^{-1}\right)\right)$ is
a) -15
b) -45
c) -135
d) -108
8. A woman has 11 close friends, in how many ways can she invite 5 of them to dinner if two of them are not on good terms and will not attend together?
a) ${ }_{9} C_{5}$
b) ${ }_{11} C_{5}$
c) ${ }_{9} C_{5}+2 \times{ }_{9} C_{4}$
d) ${ }_{9} C_{5} \times{ }_{9} C_{4}$
9. A secretary has 12 different folders, 5 black, 3 blue and 4 yellow.

In how many ways can she arrange them on a shelf if she wants to place the 5 black first?
a) 12 !
b) $5!3!4$!
c) $3!9!$
d) $5!7$!
10. In how many ways can a grocer arrange on a shelf : 3 identical bottles of Cola, 2 identical bottles of Miranda, 2 identical bottles of Seven Up, 1 bottle of water and 1 bottle of juice?
a) 90720
b) 10080
c) 15120
d) 50400

If $\mathrm{A}_{C}=\left(\begin{array}{ccc}3 & x & 3 \\ y & 2 & -5 \\ -2 & 1 & -2\end{array}\right)$ is the matrix of cofactors of the matrix $\mathrm{A}=\left(\begin{array}{rrr}1 & 2 & 0 \\ 1 & 0 & -1 \\ -1 & 3 & 2\end{array}\right)$
11. then
a) $x=-1$ and $y=-4$
b) $x=-1$ and $y=4$
c) $x=1$ and $y=-4$
d) $x=1$ and $y=4$
12. $\operatorname{det} \mathrm{A}=$
a) -1
b) 0
c) -2
d) 1

Part two: Answer each of the following questions. (Justify your answer and show your work).
(58%)

1. Given the system $\mathrm{AX}=\mathrm{B},\left\{\begin{array}{l}-2 x_{1}-3 x_{2}-2 x_{3}=2 \\ x_{1}+x_{3}=0 \\ 5 x_{1}-2 x_{2}=3\end{array}\right.$
a) Rewrite the first two columns of A to find the determinant of A .(repeated columns method)
b) Use Cramer's rule to find only x_{3}.
(6%)
2. If $\mathrm{A}=\left(\begin{array}{cc}1 & x \\ 4+x & 3\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}1 & 0 \\ x & 3\end{array}\right)$ are two matrices of order 2 , find x
so that $2 \operatorname{det} \mathrm{~A}=3+\operatorname{det} \mathrm{B}$
3. Given the following matrices,

$$
\mathrm{A}=\left(\begin{array}{ccc}
3 & 0 & 4 \\
-2 & -3 & 2 \\
1 & 2 & 1
\end{array}\right) \quad, \quad \mathrm{B}=\left(\begin{array}{cc}
2 & -5 \\
1 & -3 \\
0 & 2
\end{array}\right) \quad \text { and } \quad \mathrm{C}=\left(\begin{array}{cc}
0 & 3 \\
-1 & 2
\end{array}\right)
$$

- Find if possible
a) $3 B C-I^{2}$, where I is the identity matrix.
(3%)
b) $B^{T} A^{T}$
(3%)
c) $(A B)^{T} B+C C^{-1}$
(3%)
d) $\left(A^{3} I B-C\right)^{0}$
(2%)
- If D and E are two matrices such that $\operatorname{dimD}=(2 \times 5)$ and $\operatorname{dimE}=(3 \times 5)$, find $\operatorname{dim} \mathrm{I}$ and $\operatorname{dim} \mathrm{O}$ if $\left(D E^{T}+C^{-1} O\right)^{T}=E I D^{T}$, where I is the identity matrix and O is the zero matrix.

4. Given the system of linear equations $\left\{\begin{array}{l}3 x_{1}+12 x_{2}-3=x_{2}-4 x_{3} \\ -2 x_{1}-3 x_{2}-2 x_{3}+3=5 \\ 2 x_{2}+x_{3}=-x_{1}\end{array}\right.$
$(14 \%) \quad$ a) Write the system in matrix form as $\mathrm{AX}=\mathrm{B}$.
b) Use the Gaussian method to find A^{-1}.
c) Use A^{-1} to solve the system
5. Given two families: Mr. X, his wife and his son, Mr. Y his wife and his three daughters.
a) In how many ways can they sit on a bench?
(2%)
(2%)
b) In how many ways can they sit on a bench if the two wives are to sit together?
c) In how many ways can they sit on a bench if the men are to sit together ,the women are to sit together, and the children are to sit together ?
d) In how many ways can they sit on a bench if the two fathers are to sit one on each edge?
(2%)
e) In how many ways can they sit on a bench if the children are to sit in the middle?
6. A company places a 7 -symbol code on each unit product. The code consists of 4 digits followed by 3 letters.
(The English alphabet consists of 26 letters: 5 vowels $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$ and 21 consonants)

- How many different codes are possible?
(2%)
- How many different codes are possible if:
a) the first digit is odd and the letters are distinct?
(2%)
b) the digits are distinct less than 7 , and the first two letters are not vowels ?
(2%)
c) the digits are chosen from the set $\{2,3,7,9\}$ and the letters alternate between vowels and consonants?
(2%)
$\left.(2 \%){ }^{\sqrt{1}}\right)$ any letter can be used and the digits are the arrangements of all the digits of the number

